Calculation Policy

Issue Date: September 2021

Last reviewed: March 2024

Next review due: March 2025

This document outlines the range of strategies we use to ensure that each child has the opportunity to become fluent in the four operations (addition, subtraction, multiplication and division). This document is a working document and provided the most common calculation methods we use across school and the format we expect for certain calculations e.g. column method of addition. The use of certain methods are used at a teacher's discretion as they know the children well and know the most appropriate method to be used to ensure a strong mathematical understanding of the concept.

Addition
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \frac{\text { Objective/ }}{\text { Strategy }} & \text { Concrete } & \text { Pictorial } & \text { Abstract } & \text { Models } & \underline{\text { Vocab }} \\ \hline \underline{\text { One more }} & & 4+1=5 & \begin{array}{l}\text { add, more, and } \\ \text { make, sum, total } \\ \text { altogether } \\ \text { score } \\ \text { double } \\ \text { one more, two }\end{array} \\ \text { more, ten more... } \\ \text { how many more to } \\ \text { make...? } \\ \text { one more, ten } \\ \text { more }\end{array}\right)$

whole model		group.	abstract $\begin{aligned} & 4+3=7 \\ & 10=6+4 \end{aligned}$	be used to show/explain addition. $\underbrace{300}_{3 \text { sols }} \underbrace{300}_{2 \mathrm{tath}}$	how many more to make...? tens boundary, hundreds boundary units boundary, tenths boundary inverse Altogether both combined how many increase join plus together total
Starting at the bigger number and counting on	Start with the larger number of objects then count on the smaller number 1 by 1 using objects.	Start at the larger number on the number line/track and count on in ones or in one jump to find the answer. $12+5=17$	Place the larger number in your head and count on the smaller number to find your answer. $5+12=17$		

Subtraction

Objective/	Concrete	Pictorial	Abstract	Models	Vocab
$\underline{\text { One less }}$					

	$/ / /$ 000				
	 /III		20		
	Show how you partition numbers to subtract. Again make the larger number first.				
Column Method with regrouping	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make.	Children can start their formal written method by partitioning the number into clear place value columns.		

	away eight tens and complete my subtraction. Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.				

Multiplication

$\frac{\text { Objective/ }}{\text { Strategy }}$	Concrete	Pictorial	Abstract	Models	Vocab
Doubling	Use practical activities to show	Draw pictures to show how to	Partition a number and		lots of, groups of

$\frac{\text { Objective/ }}{\underline{\text { Strategy }}}$	Concrete	Pictorial	Abstract	Models	Vocab
Sharing into groups	I have 10 cubes， can you share them equally in 2 groups？	Children use pictures or shapes to share quantities． 务多 48 这	Share 9 buns between three people． $9 \div 3=3$		share， share equally one each，two each，three each．．． group in pairs， threes．．．tens equal groups of divide， division， divided by， divided into remainder factor，
Division as grouping	Divide quantities into equal groups． Use cubes， counters，objects or place value counters to aid understanding．	Use a number line to show jumps in groups．The number of jumps equals the number of groups． Think of the bar as a whole．Split it into the number of groups you are dividing by and work out how	$28 \div 7=4$ Divide 28 into 7 groups．How many are in each group？		divisible by inverse

		remainder. Draw dots and group them to divide an amount and clearly show a remainder.	$\underset{\uparrow}{29+8=\$ \text { REMAINDER }} \uparrow$		
Short division	Use place value counters to divide using the bus stop method alongside $42 \div 3=$ Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder. Move onto divisions with a remainder. Finally move into decimal places to divide the total accurately.		

	 How many groups of 12 are in 25 hundreds? 2 groups. Circle them. We have grouped 24 hundreds so can take them off and we are left with one. Exchange the one hundred for ten tens so now we have 14 tens. How many groups of 12 are in 14? 1 remainder 2 Exchange the two tens for twenty ones so now we have 24 ones. How many groups of 12	abstract method as this can be a time consuming process.			

